САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ

Лабораторное занятие №3.

Тема 1.3. «Реакции свободнорадикального замещения. Реакции окисления. Реакции электрофильного присоединения и замещения. Реакции нуклеофильного замещения и элиминирования. Реакции нуклеофильного присоединения в альдегидах и кетонах. Реакции нуклеофильного замещения в карбоновых кислотах».

РЕАКЦИИ ЭЛЕКТРОФИЛЬНОГО ПРИСОЕДИНЕНИЯ (A_E), ЭЛЕКТРОФИЛЬНОГО ЗАМЕЩЕНИЯ (S_E).

І. Цель: Сформировать знания о механизмах химических реакций (S_E, A_E). Выработать умение прогнозировать реакционную способность углеводородов, в том числе природных соединений и лекарственных веществ, в зависимости от электронного строения и электронных эффектов заместителей. Уметь использовать полученные знания для понимания аналогичных реакций, протекающих в организме.

II. Исходный уровень.

- 1. Электронное строение атома углерода, sp^3 , sp^2 -гибридизация.
- 2. Электронная природа химических связей в органических соединениях.
- 3. Строение δ и π -связей, их свойства.
- 4. Конформации циклогексана.
- 5. Сопряжение, виды сопряжения. Ароматичность.
- 6. Номенклатура органических соединений.
- 7. Ионный механизм реакции присоединения галогенводородов к алкенам. Правило Марковникова.
- 8. Электронные эффекты заместителей. ЭД и ЭА заместители.
- 9. Кислотность и основность органических соединений.

III. Теоретическая часть

1. Общие закономерности реакционной способности органических соединений

Основное вещество, участвующее в реакции, называется	,
другой компонент реакции	
Нуклеофильные реагенты - это	
Ими могут быть или, имеющие	,т.е
ПЛОТНОСТЬ.	
Нейтральные молекулы, имеющие НЭП:	,
отрицательно заряженные ионы:	•
Электрофильные реагенты - это	

Это	или		, и	меющие	свобод	ную	орбиталь,
то есть	электро	онную пло	отность.				
Положительно							
—————————————————————————————————————	олекулы:						
<u>2</u>	2. Электронно	е строение	е промеж	<u>суточных</u>	частиц	1	
Свободные раковалентной св		разуются	при				разрыве
CH ₃ : I	$H \rightarrow$						
Атом углерода электрон локал электронное ст	изован на роение						
	—						
Карбокатионы котором оба эле	образуются пректрона связи	ри	pa	азрыве ко 	валент	ной с	звязи, при
CH	$H_3: H \rightarrow$						
Атом углерод	а в карбок	атионе _		гибриди	зован,	Pz	орбиталь
 Допишите урав	нение. Привед	дите элект	гронное	строение	этого а	тома	углерода.
							
Карбанионы об	разуются при		раз	рыве ков	алентно	ой свя	язи.
СН	$_3: H \rightarrow$						
Атом углерода Допишите урав ——					этого а	тома	углерода.

3. Насыщенные углеводороды

	анов характерны реакции, протекающие по механизмуных является реакция галогенирования. Легче всего
замещаются атомы вод	цорода у углеродного атома, труднее у атома углерода.
	то
органического соединен Молекула O_2 — бирадин содержащими углероде	радикальных процессов является взаимодействиемия с кислородом. Допишите уравнение реакции. кал и может реагировать с соединениями водородные связи по механизму S _R с образованием
 Допишите уравнение ре	еакции.
$R - H + O_2 \rightarrow$	
Чтобы такие реакции	ого соединения кислородом протекает в организме и начались, необходимо образование в системе, за счет
взаимодействия ионов пероксидами.	в тяжелых металлов или с кислородом, или с
$Fe^{2+} + \cdot O - O \cdot$	$+ H^+ \rightarrow$
$Fe^{2+} + R - O -$	$O - H \rightarrow$
и уже с участием этих р	адикальных частиц $(X \cdot)$ протекает цепная реакция:
I Инициирование	$R: H + X \cdot \rightarrow$
II Рост цепи	$R \cdot + \cdot O - O \cdot \rightarrow$
III Обрыв цепи (одна из	возможных реакций)
Допишите уравнения ре	$R - O - O \cdot + R \cdot \rightarrow$ еакций.
<u>4</u>	. Ненасыщенные углеводороды
Реакции элект	грофильного присоединения (A_E) к алкенам
Реакция протекает стади Скорость определяюща Допишите механизм реа	ийно через образованияи_ комплексов. я стадия реакции – образование акции (в общем виде).

Одной из важнейших реакций является реакция гидратации. Вода является нуклеофилом, поэтому в качестве E^+ реагента выступает H^+ (каталитические количества минеральных кислот чаще H_2SO_4). Допишите механизм реакции.

$$CH_2 = CH_2 \xrightarrow{+} C = C \xrightarrow{+} C + HOH$$

$$CH_3 - CH_2 - CH_3 - CH_2 - CH_3 - CH_2 - CH_3 - CH_3$$

Это значит, что протон присоединяется к атому углерода, имеющему _____, в результате чего образуется _______.

5. Ароматические углеводороды Реакции электрофильного замещения (S_E)

Взаимодействие аренов с E^+ реагентами также протекает стадийно через образование ___ и ___ комплексов.

Но особенность реакций S_E в аренах состоит в том, что при взаимодействии с термодинамически устойчивой ароматической системой требуются сильные электрофилы, которые генерируются с помощью катализаторов.

$$E-Y$$
 $\xrightarrow{\text{поляризация}}$ $\xrightarrow{\text{разрыв}}$ $\xrightarrow{\text{связи}}$

Допишите уравнения реакций.