«	>>	г. Занятие 7.	2часа

Тема: Порядок и беспорядок в природе. Принцип возрастания энтропии. Синергетика.

Основные вопросы темы:

- 1. Динамические и статистические закономерности в природе.
- 2. Термодинамика.
- 3. Принцип возрастания энтропии.
- 4. Синергетика. Закономерности самоорганизации.
- 5. Принципы универсального эволюционизма.

Работа 1. Динамические и статистические закономерности в природе.

Работа 1. Динамические и статистические закономерности в природе.			
•	Полная предопределённость всех будущих событий – это		
	идея		
они отражают?	«Мы должны рассматривать существующее состояние Вселенной как следствие предыдущего состояния и как причину последующего Ничто не было бы для него недостоверным, и будущее, как и прошедшее, стало бы перед его глазами».		
• Что отражают эти определения? • Чьи это слова?	 существует единственно возможная траектория движения материальной точки при заданном начальном состоянии. Т.е. зная исходные координаты механических процессов, можно точно спрогнозировать, что, где, когда произойдет. лапласова концепция полной выводимости всего будущего (и прошлого) Вселенной из ее современного состояния с помощью законов механики. «Лучше уж следовать мифу о богах, чем быть рабом физиков; миф дает надежду умилостивить богов, а судьба заключает в себе неумолимую необходимость». Случайность, с его точки зрения, ничем не определяется (беспричинна) - такое учение, противостоящее детерминизму, было названо - индетерминизма. 		
•	динамическая теория, которая однозначно связывает между собой значения физических величин, характеризующих состояние системы. Это описание мира с точки зрения		
Описание систем с:	статистическая теория, которая однозначно связывает между собой вероятности тех или иных значений физических величин. Это описание систем		
Примеры динамических теорий	•		

Основные понятия статистической теории	
Примеры статистических теорий	
Соответствие динамических и статистических теорий	

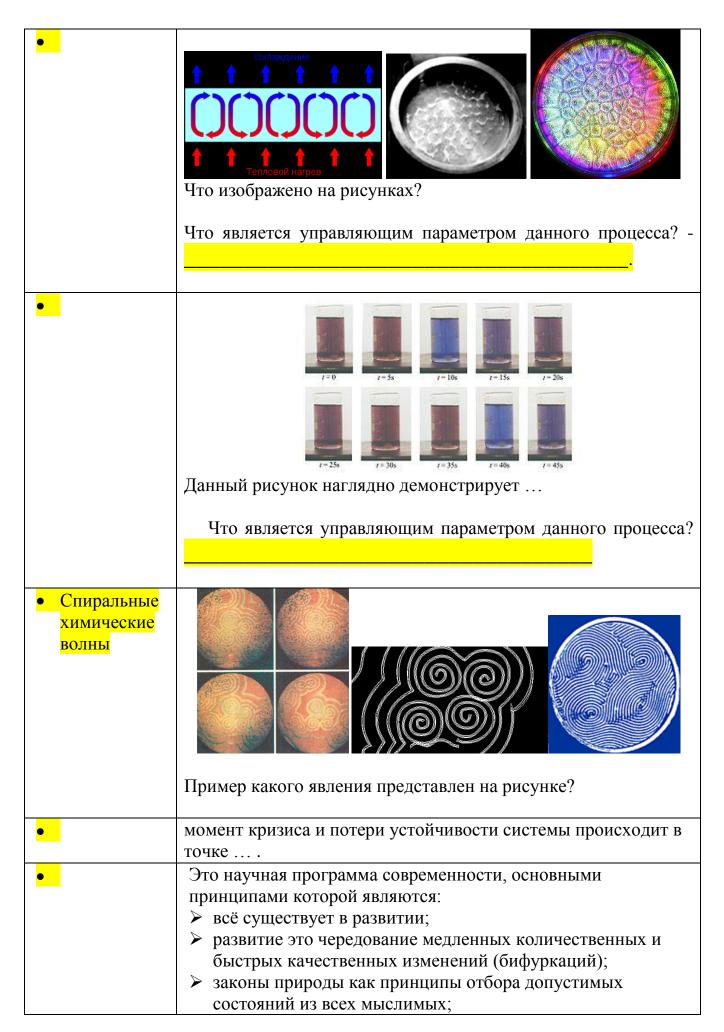
Работа 2. Термодинамика: основные законы и понятия.

Tuoota zi Tepinogini	Tamina. Octobilbic Sakonbi ii Honatha.		
•	Это наука о тепловых явлениях, в которой не учитывается молекулярное строение тел и тепловые явления характеризуются параметрами, регистрируемыми приборами (термометрами, манометрами и др.), не реагирующими на воздействие отдельных молекул. Исторически возникла как эмпирическая наука об основных способах преобразования внутренней энергии тел для совершения механической работы. Однако в процессе своего развития проникла во все разделы физики, где возможно ввести понятие «температура» и позволила теоретически предсказать многие явления задолго до появления строгой теории этих явлений. — это скалярная физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода		
	совершения механической работы. Однако в процессе своего		
	* *		
	движения материи из одних форм в другие.		
Формы энергии, в соответствии с			
различными	_		
формами			
движения материи			

•	Для каждой изолированной термодинамической системы существует состояние термодинамического равновесия (все			
	тела находятся в состоянии покоя по отношению друг к другу), которого она при фиксированных внешних условиях			
	с течением времени самопроизвольно достигает. Достигнув равновесия, система сама по себе из него не			
	выходит. Значит, все термодинамические процессы,			
	приближающиеся к тепловому равновесию, необратимы.			
•	закон сохранения энергии при ее превращениях, как			
	утверждение о невозможности вечного двигателя первого рода.			
	Количество теплоты, сообщенное телу, идет на			
	увеличение его внутренней энергии и на совершение телом работы.			
•	Этот закон исключает создание вечного двигателя			
	первого рода – т.е. такого, который бы совершал работу «из			
	ничего», без внешнего источника энергии.			
•	это закон возрастания энтропии, который утверждает о			
	невозможности получения работы за счет энергии тел,			
	находящихся в термодинамическом равновесии.			
	Для всех происходящих в замкнутой системе			
	(изолированной - нет подвода или отвода тепла) -			
	тепловых процессов энтропия системы <u>возрастает;</u> максимально возможное значение энтропии замкнутой			
	системы достигается в тепловом равновесии.			
•	Этот закон термодинамики исключает возможность создания			
	вечного двигателя второго рода – двигателя, работающего			
D 4	только за счет энергии находящейся в тепловом равновесии тел.			
Второй закон				
термодинамики можно				
рассматривать как:	•			
риссмитривить кик.	•			
	•			
	Это закон, согласно которому, энтропия любой системы при			
	абсолютном нуле температуры всегда может быть			
	принята равной нулю.			
	При абсолютном нуле температуры энтропия			
	принимает значение, не зависящее от давления,			
	агрегатного состояния и других характеристик			
	вещества. Такое значение можно положить равным			
	нулю.			

Термодинамика	
жизни:	
	Это физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. С молекулярно-кинетической точки зрения — физическая величина, характеризующая интенсивность хаотического, теплового движения всей совокупности частиц системы и пропорциональная средней кинетической энергии поступательного движения одной частицы. С точки зрения термодинамики — это величина, обратная изменению энтропии (степени беспорядка) системы при добавлении в систему единичного количества теплоты. В настоящее время рекомендовано применять только две шкала: - термодинамическую, измерения в <u>Кельвинах</u> (К); - Международную практическую, измерение в градусах <u>Цельсия</u> (°C)
	Шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за -273,15° С. В Англии и, в особенности, в США используется шкала Фаренгейта. Ноль градусов Цельсия — это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.
	Некоторые постоянные температура абсолютного нуля, по Кельвину 0К. абсолютный ноль не достижим, хотя приближение к нему возможно. Температура сжижения кислорода218°C температура замерзания воды температура тела человека – ок. 37°C температура кипения воды температура плавления алюминия - 660°C температура в центре Земли – ок. 4500°C температура в центре Солнца – достигает 5млн. °C
•	Системы, характеризующиеся отсутствием обмена энергией, они, в соответствии со 2 законом термодинамики, стремятся к однородному равновесному состоянию. Системы, характеризующиеся обменом с окружающей средой веществом, энергией и информацией.
•	 Это мера молекулярного беспорядка мера хаоса, которая для всех <u>естественных</u> процессов возрастает. меры необратимого рассеяния энергии, «омертвленная» энергия, которую нельзя превратить в работу.

Работа 4. Закономерности самоорганизации. Принципы универсального эволюционизма


эволюционизма А) Основные поняті	19.
•	Это междисциплинарная наука, изучающая сложные самоорганизующиеся системы.
•	- это природные скачкообразные процессы, переводящие открытую неравновесную систему, достигшую в своем развитии критического состояния, в новое устойчивое состояние с более высоким уровнем сложности и упорядоченности по сравнению с исходной.
	Критическое состояние характеризуется крайней неустойчивостью, завершающей плавное эволюционное развитие открытой неравновесной системы.
Самоорганизация в природных и социальных системах — рассматривается как	
Необходимые условия самоорганизации	
	•
•	Эта система состоит из небольшого числа переменных, взаимоотношения между ними поддаются математической обработке и подчиняются универсальным законам.
•	Эта система состоят из большого числа переменных, а значит, большего числа связей между ними. В этом случае труднее изучить объект и вывести закономерности его функционирования.
•	 это свойства, которых нет у частей системы и, которые являются следствием эффекта целой системы. Чем сложнее система, тем больше у нее таких свойств.
Виды обратных связей в системе	Com estomate chetema, tem oostame y nee takux ebonets. Comesto substituting tem oostame y nee takux ebonets.
•	Свойство системы, остающиеся без изменений в потоке событий, наз

Б) Сравнительная характеристика разных типов систем.

Б) Сравнительная характеристика разных типов систем.			
Система реагирует на внешние условия	Для перехода от одной структуры к		
(гравитация, магнитное излучение и т.д.).	другой требуется очень сильное		
Адаптируется к внешним условиям, меняя	изменение условий		
свою структуру			
Множество стационарных состояний	одно стационарное состояние		
Поведение случайно и не зависит от	Поведение системы определяют		
начальных условий, но зависит от	линейные зависимости		
предыстории			
Приток энергии создает в системе порядок и	Молекулы ведут себя независимо		
энтропия Источник	друг от друга.		
порядка и сложности – неравномерность			
(разные части действуют согласованно)			
Чувствительность к флюктуации. Наличие	Нечувствительность к		
– переломной	флюктуациям.		
точки в развитии системы			
– система ведет себя	Все закрытые системы стремятся к		
как единое целое, сколько бы в ней не было	равновесному состоянию, так как		
дальнодействующих сил. Каждая молекула	не получают энергию из вне.		
системы как бы информирована о состоянии	(пример, кристалл)		
системы в целом.			
Ее основные признаки: протекание потоков	-		
вещества, энергии, заряда и т.д.			

В) Самоорганизация систем.

В) Симооргинизиция систем.				
•	- это рассеяние энергии в неравновесной системе.			
•	- это неравновесная упорядоченная структура, возникшая в результате самоорганизации.			
В результате самоорганизации системы:	- энтропия этой системы — энтропия окружающей среды —			
Примеры самоорганизации в простейших системах	• •			

фундаментальная и неустранимая роль случайности и неопределенности;
 непредсказуемость пути выхода из точки бифуркации (прошлое влияет на будущее, но не определяет его);
 устойчивость и надежность природных систем как результат их постоянного обновления.

П	реподаватель:		
	•••••••		